Vector calculus - Complex analysis - ODE/PDE - Tensors
Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C
1. Vector calculus ― one–page essentials
| Tool | Key formulas | Quick tip |
|---|
| Gradient | ∇f=i^∂xf+j^∂yf+k^∂zf | Direction of steepest rise |
| Divergence | ∇⋅A=∂xAx+∂yAy+∂zAz | >0 ⇒ source; <0 ⇒ sink |
| Curl | ∇×A=i^∂xAxj^∂yAyk^∂zAz | Non-zero ⇒ field rotational |
| Integral theorems | ∮A⋅dl=∬(∇×A)⋅dS (Stokes) | |
| ∬A⋅dS=∭(∇⋅A)dV (Gauss) | Always sketch surface orientation first | |
Curvilinear coordinates: scale factors hi;
∇f=∑ie^ihi1∂qif.
Remember hr=1,hθ=r,hϕ=rsinθ in spherical.
2. Complex analysis ― NET-level core
-
Cauchy–Riemann (Cartesian)
ux=vy,uy=−vx ⇒ analytic at point.
-
Cauchy integral formula
f(n)(z0)=2πin!∮C(z−z0)n+1f(z)dz.
-
Maximum-modulus principle
|f(z)| attains max on boundary of domain.
-
Residue at simple pole z0
Res[f,z0]=z→z0lim(z−z0)f(z).
Net contour integral =2πi∑Residues.
-
Quick Laurent check
If pole order m, principal part has m terms only.
3. Ordinary differential equations (ODE)
| Class | Canonical form | NET favourite |
|---|
| 2nd-order linear | y′′+P(x)y′+Q(x)y=R(x) | Frobenius at regular singular point |
| Sturm–Liouville | (py′)′+λwy=0 | Orthogonality: ∫wymyn=0(m=n) |
| Green’s function | Ly=f⇒y=∫G(x,ξ)f(ξ)dξ | Write G from two independent solutions |
Variation-of-parameters recipe
y=y1∫Wy2Rdx−y2∫Wy1Rdx.
4. Partial differential equations (PDE)
-
Classification (2-D) by B2−4AC for Auxx+Buxy+Cuyy:
-
<0 elliptic (Laplace) - =0 parabolic (heat) - >0 hyperbolic (wave).
-
Separation of variables quick template (Cartesian)
Assume u(x,t)=X(x)T(t) ⇒ split into two ODEs with separation constant −λ.
-
First-order PDE – Lagrange auxiliary system
For Pp+Qq=R use Pdx=Qdy=Rdz.
5. Tensors & curvilinear coordinates
-
Tensor of rank r: transforms with r direction cosines.
-
Metric tensor gij=ei⋅ej; in spherical gij=diag(1,r2,r2sin2θ).
-
Christoffel symbols
Γijk=21gkl(∂iglj+∂jgil−∂lgij).
-
Covariant derivative Ai;j=∂jAi+ΓkjiAk.
6. Speed-drill examples
-
Residue evaluation
∮ z2(z−1)eizdz around |z|=½.
Only pole at z=0 inside. Order 2 ⇒ residue =1!1∂z[eiz/(z−1)]z=0=−1.
Integral = 2πi(−1)=−2πi.
-
Green’s function for y′′=f(x) on 0<x<1, y(0)=y(1)=0.
G(x,ξ)={x(1−ξ),ξ(1−x),x<ξx>ξ.
-
Tensor contraction
In 3-D, the double dot of two second-rank tensors A:B=AijBij.
7. 15-day micro-plan
-
Days 1-3: Vector calculus identities & integral theorems—prove them once, then derive EM problems.
-
Days 4-6: Complex analysis—daily 20 residue questions; memorise standard series (ln(1+z), sin z).
-
Days 7-10: ODE/PDE—solve one Sturm–Liouville and one separation-of-variables set each day.
-
Days 11-13: Tensors—rewrite Maxwell eqns in spherical; practice raising/lowering indices.
-
Days 14-15: Mixed past CSIR problems; simulate 3-hr Part-B/Part-C.