Type Here to Get Search Results !

 

BFA

Bright Future Academy

Mathematical Methods of Physics Vector calculus - Complex analysis - ODE/PDE - Tensors Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C

 Mathematical Methods of Physics

Vector calculus - Complex analysis - ODE/PDE - Tensors
Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C


1. Vector calculus ― one–page essentials

ToolKey formulasQuick tip
Gradientf=i^xf+j^yf+k^zf\nabla f = \hat{i}\partial_x f + \hat{j}\partial_y f + \hat{k}\partial_z fDirection of steepest rise
Divergence ⁣ ⁣A=xAx+yAy+zAz\nabla\!\cdot\!\mathbf{A}=\partial_x A_x+\partial_y A_y+\partial_z A_z>0 ⇒ source; <0 ⇒ sink
Curl ⁣× ⁣A=i^j^k^xyzAxAyAz\nabla\!\times\!\mathbf{A}= \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\ \partial_x&\partial_y&\partial_z\\ A_x&A_y&A_z\end{vmatrix}Non-zero ⇒ field rotational
Integral theoremsA ⁣ ⁣dl=( ⁣× ⁣A) ⁣ ⁣dS\displaystyle\oint \mathbf{A}\!\cdot\!d\mathbf{l}= \iint (\nabla\!\times\!\mathbf{A})\!\cdot\!d\mathbf{S} (Stokes)
A ⁣ ⁣dS=( ⁣ ⁣A)dV\displaystyle\iint \mathbf{A}\!\cdot\!d\mathbf{S}= \iiint (\nabla\!\cdot\!\mathbf{A})\,dV (Gauss)Always sketch surface orientation first

Curvilinear coordinates: scale factors hih_i;
f=ie^i1hiqif\nabla f = \sum_i \hat{e}_i\frac{1}{h_i}\partial_{q_i}f.
Remember hr=1,  hθ=r,  hϕ=rsinθh_r=1,\;h_\theta=r,\;h_\phi=r\sin\theta in spherical.


2. Complex analysis ― NET-level core

  1. Cauchy–Riemann (Cartesian)
    ux=vy,  uy=vxu_x=v_y,\;u_y=-v_x ⇒ analytic at point.

  2. Cauchy integral formula
    f(n)(z0)=n!2πiCf(z)(zz0)n+1dzf^{(n)}(z_0)=\dfrac{n!}{2\pi i}\displaystyle\oint_{C}\dfrac{f(z)}{(z-z_0)^{n+1}}dz.

  3. Maximum-modulus principle
    |f(z)| attains max on boundary of domain.

  4. Residue at simple pole z0z_0
    Res[f,z0]=limzz0(zz0)f(z)\text{Res}[f,z_0]=\displaystyle\lim_{z\to z_0}(z-z_0)f(z).
    Net contour integral =2πiResidues=2\pi i\sum\text{Residues}.

  5. Quick Laurent check
    If pole order m, principal part has m terms only.


3. Ordinary differential equations (ODE)

ClassCanonical formNET favourite
2nd-order lineary+P(x)y+Q(x)y=R(x)y''+P(x)y'+Q(x)y=R(x)Frobenius at regular singular point
Sturm–Liouville(py)+λwy=0(p y')'+\lambda w y=0Orthogonality: wymyn=0  (mn)\int w\,y_m y_n=0\;(m\ne n)
Green’s functionLy=f    y=G(x,ξ)f(ξ)dξLy=f\;\Rightarrow\;y=\int G(x,\xi)f(\xi)d\xiWrite G from two independent solutions

Variation-of-parameters recipe
y=y1 ⁣y2RWdxy2 ⁣y1RWdxy=y_1\int\!\dfrac{y_2 R}{W}\,dx - y_2\int\!\dfrac{y_1 R}{W}\,dx.


4. Partial differential equations (PDE)

  1. Classification (2-D) by B24ACB^2-4AC for Auxx+Buxy+CuyyA u_{xx}+B u_{xy}+C u_{yy}:

    • <0 elliptic (Laplace) - =0 parabolic (heat) - >0 hyperbolic (wave).

  2. Separation of variables quick template (Cartesian)
    Assume u(x,t)=X(x)T(t)u(x,t)=X(x)T(t) ⇒ split into two ODEs with separation constant −λ.

  3. First-order PDE – Lagrange auxiliary system
    For Pp+Qq=RP\,p+Q\,q = R use dxP=dyQ=dzR\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R}.


5. Tensors & curvilinear coordinates

  • Tensor of rank r: transforms with r direction cosines.

  • Metric tensor gij=ei ⁣ ⁣ejg_{ij}= \mathbf{e}_i\!\cdot\!\mathbf{e}_j; in spherical gij=diag(1,r2,r2sin2θ)g_{ij}=\text{diag}(1,r^{2},r^{2}\sin^{2}\theta).

  • Christoffel symbols
    Γijk=12gkl(iglj+jgillgij)\Gamma^{k}_{ij}= \tfrac12 g^{kl}(\partial_i g_{lj} + \partial_j g_{il} - \partial_l g_{ij}).

  • Covariant derivative Ai;j=jAi+ΓkjiAkA^{i}{}_{;j}= \partial_j A^{i}+ \Gamma^{i}_{kj}A^{k}.


6. Speed-drill examples

  1. Residue evaluation
    eizz2(z1)dz \dfrac{e^{iz}}{z^{2}(z-1)}dz around |z|=½.
    Only pole at z=0 inside. Order 2 ⇒ residue =11!z[eiz/(z1)]z=0=1=\frac{1}{1!}\,\partial_z[e^{iz}/(z-1)]_{z=0}= -1.
    Integral = 2πi(1)=2πi2\pi i(-1)=-2\pi i.

  2. Green’s function for y=f(x)y''=f(x) on 0<x<1, y(0)=y(1)=0.
    G(x,ξ)={x(1ξ),x<ξξ(1x),x>ξG(x,\xi)=\begin{cases} x(1-\xi), & x<\xi\\ \xi(1-x), & x>\xi \end{cases}.

  3. Tensor contraction
    In 3-D, the double dot of two second-rank tensors A:B=AijBijA:B = A_{ij}B_{ij}.


7. 15-day micro-plan

  • Days 1-3: Vector calculus identities & integral theorems—prove them once, then derive EM problems.

  • Days 4-6: Complex analysis—daily 20 residue questions; memorise standard series (ln(1+z), sin z).

  • Days 7-10: ODE/PDE—solve one Sturm–Liouville and one separation-of-variables set each day.

  • Days 11-13: Tensors—rewrite Maxwell eqns in spherical; practice raising/lowering indices.

  • Days 14-15: Mixed past CSIR problems; simulate 3-hr Part-B/Part-C.

Post a Comment

0 Comments