Home Mathematical Methods of Physics
Vector calculus - Complex analysis - ODE/PDE - Tensors
Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C Mathematical Methods of Physics Vector calculus - Complex analysis - ODE/PDE - Tensors Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C
Read more
Mathematical Methods of Physics
Vector calculus - Complex analysis - ODE/PDE - Tensors
Class notes focused on CSIR-UGC NET/JRF/Ph.D. Part-B & Part-C
1. Vector calculus ― one–page essentials
Tool Key formulas Quick tip Gradient ∇ f = i ^ ∂ x f + j ^ ∂ y f + k ^ ∂ z f \nabla f = \hat{i}\partial_x f + \hat{j}\partial_y f + \hat{k}\partial_z f ∇ f = i ^ ∂ x f + j ^ ∂ y f + k ^ ∂ z f Direction of steepest rise Divergence ∇ ⋅ A = ∂ x A x + ∂ y A y + ∂ z A z \nabla\!\cdot\!\mathbf{A}=\partial_x A_x+\partial_y A_y+\partial_z A_z ∇ ⋅ A = ∂ x A x + ∂ y A y + ∂ z A z >0 ⇒ source; <0 ⇒ sink Curl ∇ × A = ∣ i ^ j ^ k ^ ∂ x ∂ y ∂ z A x A y A z ∣ \nabla\!\times\!\mathbf{A}= \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\ \partial_x&\partial_y&\partial_z\\ A_x&A_y&A_z\end{vmatrix} ∇ × A = i ^ ∂ x A x j ^ ∂ y A y k ^ ∂ z A z Non-zero ⇒ field rotational Integral theorems ∮ A ⋅ d l = ∬ ( ∇ × A ) ⋅ d S \displaystyle\oint \mathbf{A}\!\cdot\!d\mathbf{l}= \iint (\nabla\!\times\!\mathbf{A})\!\cdot\!d\mathbf{S} ∮ A ⋅ d l = ∬ ( ∇ × A ) ⋅ d S (Stokes)∬ A ⋅ d S = ∭ ( ∇ ⋅ A ) d V \displaystyle\iint \mathbf{A}\!\cdot\!d\mathbf{S}= \iiint (\nabla\!\cdot\!\mathbf{A})\,dV ∬ A ⋅ d S = ∭ ( ∇ ⋅ A ) d V (Gauss)Always sketch surface orientation first
Curvilinear coordinates: scale factors h i h_i h i ;
∇ f = ∑ i e ^ i 1 h i ∂ q i f \nabla f = \sum_i \hat{e}_i\frac{1}{h_i}\partial_{q_i}f ∇ f = ∑ i e ^ i h i 1 ∂ q i f .
Remember h r = 1 , h θ = r , h ϕ = r sin θ h_r=1,\;h_\theta=r,\;h_\phi=r\sin\theta h r = 1 , h θ = r , h ϕ = r sin θ in spherical.
2. Complex analysis ― NET-level core
Cauchy–Riemann (Cartesian)
u x = v y , u y = − v x u_x=v_y,\;u_y=-v_x u x = v y , u y = − v x ⇒ analytic at point.
Cauchy integral formula
f ( n ) ( z 0 ) = n ! 2 π i ∮ C f ( z ) ( z − z 0 ) n + 1 d z f^{(n)}(z_0)=\dfrac{n!}{2\pi i}\displaystyle\oint_{C}\dfrac{f(z)}{(z-z_0)^{n+1}}dz f ( n ) ( z 0 ) = 2 πi n ! ∮ C ( z − z 0 ) n + 1 f ( z ) d z .
Maximum-modulus principle
|f(z)| attains max on boundary of domain.
Residue at simple pole z 0 z_0 z 0
Res [ f , z 0 ] = lim z → z 0 ( z − z 0 ) f ( z ) \text{Res}[f,z_0]=\displaystyle\lim_{z\to z_0}(z-z_0)f(z) Res [ f , z 0 ] = z → z 0 lim ( z − z 0 ) f ( z ) .
Net contour integral = 2 π i ∑ Residues =2\pi i\sum\text{Residues} = 2 πi ∑ Residues .
Quick Laurent check
If pole order m, principal part has m terms only.
3. Ordinary differential equations (ODE)
Class Canonical form NET favourite 2nd-order linear y ′ ′ + P ( x ) y ′ + Q ( x ) y = R ( x ) y''+P(x)y'+Q(x)y=R(x) y ′′ + P ( x ) y ′ + Q ( x ) y = R ( x ) Frobenius at regular singular point Sturm–Liouville ( p y ′ ) ′ + λ w y = 0 (p y')'+\lambda w y=0 ( p y ′ ) ′ + λ w y = 0 Orthogonality: ∫ w y m y n = 0 ( m ≠ n ) \int w\,y_m y_n=0\;(m\ne n) ∫ w y m y n = 0 ( m = n ) Green’s function L y = f ⇒ y = ∫ G ( x , ξ ) f ( ξ ) d ξ Ly=f\;\Rightarrow\;y=\int G(x,\xi)f(\xi)d\xi L y = f ⇒ y = ∫ G ( x , ξ ) f ( ξ ) d ξ Write G from two independent solutions
Variation-of-parameters recipe
y = y 1 ∫ y 2 R W d x − y 2 ∫ y 1 R W d x y=y_1\int\!\dfrac{y_2 R}{W}\,dx - y_2\int\!\dfrac{y_1 R}{W}\,dx y = y 1 ∫ W y 2 R d x − y 2 ∫ W y 1 R d x .
4. Partial differential equations (PDE)
Classification (2-D) by B 2 − 4 A C B^2-4AC B 2 − 4 A C for A u x x + B u x y + C u y y A u_{xx}+B u_{xy}+C u_{yy} A u xx + B u x y + C u yy :
<0 elliptic (Laplace) - =0 parabolic (heat) - >0 hyperbolic (wave).
Separation of variables quick template (Cartesian)
Assume u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u ( x , t ) = X ( x ) T ( t ) ⇒ split into two ODEs with separation constant −λ.
First-order PDE – Lagrange auxiliary system
For P p + Q q = R P\,p+Q\,q = R P p + Q q = R use d x P = d y Q = d z R \dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R} P d x = Q d y = R d z .
5. Tensors & curvilinear coordinates
Tensor of rank r: transforms with r direction cosines.
Metric tensor g i j = e i ⋅ e j g_{ij}= \mathbf{e}_i\!\cdot\!\mathbf{e}_j g ij = e i ⋅ e j ; in spherical g i j = diag ( 1 , r 2 , r 2 sin 2 θ ) g_{ij}=\text{diag}(1,r^{2},r^{2}\sin^{2}\theta) g ij = diag ( 1 , r 2 , r 2 sin 2 θ ) .
Christoffel symbols
Γ i j k = 1 2 g k l ( ∂ i g l j + ∂ j g i l − ∂ l g i j ) \Gamma^{k}_{ij}= \tfrac12 g^{kl}(\partial_i g_{lj} + \partial_j g_{il} - \partial_l g_{ij}) Γ ij k = 2 1 g k l ( ∂ i g l j + ∂ j g i l − ∂ l g ij ) .
Covariant derivative A i ; j = ∂ j A i + Γ k j i A k A^{i}{}_{;j}= \partial_j A^{i}+ \Gamma^{i}_{kj}A^{k} A i ; j = ∂ j A i + Γ kj i A k .
6. Speed-drill examples
Residue evaluation
∮ e i z z 2 ( z − 1 ) d z \dfrac{e^{iz}}{z^{2}(z-1)}dz z 2 ( z − 1 ) e i z d z around |z|=½.
Only pole at z=0 inside. Order 2 ⇒ residue = 1 1 ! ∂ z [ e i z / ( z − 1 ) ] z = 0 = − 1 =\frac{1}{1!}\,\partial_z[e^{iz}/(z-1)]_{z=0}= -1 = 1 ! 1 ∂ z [ e i z / ( z − 1 ) ] z = 0 = − 1 .
Integral = 2 π i ( − 1 ) = − 2 π i 2\pi i(-1)=-2\pi i 2 πi ( − 1 ) = − 2 πi .
Green’s function for y ′ ′ = f ( x ) y''=f(x) y ′′ = f ( x ) on 0<x<1, y(0)=y(1)=0.
G ( x , ξ ) = { x ( 1 − ξ ) , x < ξ ξ ( 1 − x ) , x > ξ G(x,\xi)=\begin{cases} x(1-\xi), & x<\xi\\ \xi(1-x), & x>\xi \end{cases} G ( x , ξ ) = { x ( 1 − ξ ) , ξ ( 1 − x ) , x < ξ x > ξ .
Tensor contraction
In 3-D, the double dot of two second-rank tensors A : B = A i j B i j A:B = A_{ij}B_{ij} A : B = A ij B ij .
7. 15-day micro-plan
Days 1-3: Vector calculus identities & integral theorems—prove them once, then derive EM problems.
Days 4-6: Complex analysis—daily 20 residue questions; memorise standard series (ln(1+z), sin z).
Days 7-10: ODE/PDE—solve one Sturm–Liouville and one separation-of-variables set each day.
Days 11-13: Tensors—rewrite Maxwell eqns in spherical; practice raising/lowering indices.
Days 14-15: Mixed past CSIR problems; simulate 3-hr Part-B/Part-C.
0 Reviews