Type Here to Get Search Results !

 

BFA

Bright Future Academy

Classical Mechanics (Lagrangian-Hamiltonian formalisms & Small Oscillations) – CSIR-UGC NET/JRF/PhD Quick Notes

 

Classical Mechanics (Lagrangian-Hamiltonian formalisms & Small Oscillations) – CSIR-UGC NET/JRF/PhD Quick Notes

These condensed notes focus on material repeatedly tested in Part B (conceptual) and Part C (problem-solving) of the Physical Sciences paper.


1. Variational Foundations

  • Principle of least action:
    δS=0,S=t1t2L(qi,q˙i,t)dt\delta S=0,\quad S=\displaystyle\int_{t_1}^{t_2}L(q_i,\dot q_i,t)\,dt

  • Euler-Lagrange:
    ddt ⁣(Lq˙i)Lqi=0\displaystyle\frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot q_i}\right)-\frac{\partial L}{\partial q_i}=0

  • Cyclic (ignorable) coordinate ⇒ conjugate momentum conserved: L/qk=0    pk=const.\partial L/\partial q_k=0 \implies p_k=\text{const.}


2. From Lagrange to Hamilton

  1. Define canonical momentum pi=L/q˙ip_i=\partial L/\partial\dot q_i

  2. Legendre transform: H(q,p,t)=piq˙iLH(q,p,t)=\sum p_i\dot q_i-L

  3. Hamilton’s equations:
    q˙i=H/pi,p˙i=H/qi\dot q_i=\partial H/\partial p_i,\quad \dot p_i=-\partial H/\partial q_i

Poisson bracket of any two functions A,BA,B:
{A,B}=i ⁣(A/qiB/piA/piB/qi)\{A,B\}=\sum_i\!\bigl(\partial A/\partial q_i\,\partial B/\partial p_i-\partial A/\partial p_i\,\partial B/\partial q_i\bigr)


3. Small-Oscillation Formalism

For equilibrium at qi(0)q_i^{(0)}:

  1. Expand L=TVL=T-V to second order in ηi=qiqi(0)\eta_i=q_i-q_i^{(0)}.

  2. Obtain matrix form:

    V=\tfrac12\sum K_{ij}\eta_i\eta_j $$
  3. Equations: Mη¨+Kη=0\mathbf M\ddot{\boldsymbol\eta}+\mathbf K\boldsymbol\eta=0

  4. Normal-mode frequencies from detKω2M=0\,|K-\omega^2 M|=0.

Example: double pendulum small angles → 2×2 eigenvalue problem yields two normal ω’s.


4. Quick-Reference Identities

TopicKey Result
Generalized energyE=q˙ipiL;  E=\sum \dot q_i\,p_i-L;\; if LL is time-independent → E=HE=H conserved
Noether theoremContinuous symmetry ⇔ conserved quantity (e.g. spatial translation → momentum)
Legendre transform trickFor 1-D systems often faster to write H=p22m+V(q)H=\tfrac{p^2}{2m}+V(q) directly
Small oscillation of 1-D potential V(x)V(x)Around stable point x0x_0: ω=V(x0)/m \omega=\sqrt{\,V''(x_0)/m}

5. Illustrative Mini-Problems

  1. Simple Harmonic Oscillator
    Lagrangian L=12mx˙212kx2L=\frac12m\dot x^2-\frac12kx^2
    p=mx˙,  H=p2/2m+kx2/2p=m\dot x,\;H=p^2/2m+kx^2/2
    → frequency ω=k/m\omega=\sqrt{k/m}

  2. Bead on Rotating Hoop (small θ about bottom)
    Effective potential near equilibrium Veff12(mg/RmΩ2)θ2V_\text{eff}≈\frac12(mg/R- mΩ^2)\theta^2
    → stable only if Ω2<g/RΩ^2<g/R; then ω=g/RΩ2\omega=\sqrt{g/R-Ω^2}.

  3. Coupled Mass–Spring (2 masses, spring k)
    Matrices M=mI,  K=k(2112)M=m\mathbf I,\;K=k\begin{pmatrix}2&-1\\-1&2\end{pmatrix}
    → eigen-ω: ω1=k/m,  ω2=3k/m\omega_1=\sqrt{k/m},\; \omega_2=\sqrt{3k/m}.


6. Common Exam-Level Pitfalls

  • Forgetting to include generalized coordinates of the rigid body: need three Euler angles plus possible translations (total 6 DOF).

  • Mixing up small-angle linearization: keep only up to θ2\theta^2 in V and drop higher-order terms in T too.

  • Ignoring sign of V(x0)V''(x_0): positive ⇒ stable equilibrium; negative ⇒ unstable (imaginary ω).


7. Rapid Revision Sheet

  1. Write down Euler-Lagrange, canonical momenta, Hamilton equations.

  2. Memorize SHM frequency formula in 1-D: ω=V/m\omega=\sqrt{V''/m}.

  3. Remember matrices M,KM, K for small-oscillation multi-DOF.

  4. For cyclic coordinate: pp conserved, reduces DOF.

  5. Poisson-bracket properties: antisymmetry, bilinearity, Jacobi identity.

Post a Comment

0 Comments